1.2 Отличия архитектур CPU и GPU

Разработчики CPU стараются добиться выполнения как можно большего числа инструкций параллельно, для увеличения производительности. Для этого, начиная с процессоров Intel Pentium, появилось суперскалярное выполнение, обеспечивающее выполнение двух инструкций за такт, а Pentium Pro отличился внеочередным выполнением инструкций. Но у параллельного выполнения последовательного потока инструкций есть определённые базовые ограничения и увеличением количества исполнительных блоков кратного увеличения скорости не добиться.

Затронем основные различия между архитектурами CPU и GPU. Ядра CPU созданы для исполнения одного потока последовательных инструкций с максимальной производительностью, а GPU для быстрого исполнения большого числа параллельно выполняемых потоков инструкций. Универсальные процессоры оптимизированы для достижения высокой производительности единственного потока команд, обрабатывающего и целые числа и числа с плавающей точкой. При этом доступ к памяти случайный.

У видеочипов работа простая и распараллеленная изначально. Видеочип принимает на входе группу полигонов, проводит все необходимые операции, и на выходе выдаёт пиксели. Обработка полигонов и пикселей независима, их можно обрабатывать параллельно, отдельно друг от друга. Поэтому, из-за изначально параллельной организации работы в GPU используется большое количество исполнительных блоков, которые легко загрузить, в отличие от последовательного потока инструкций для CPU. Кроме того, современные GPU также могут исполнять больше одной инструкции за такт (dual issue). GPU отличается от CPU ещё и по принципам доступа к памяти. В GPU он связанный и легко предсказуемый — если из памяти читается тексель текстуры, то через некоторое время придёт время и для соседних текселей. Да и при записи то же — пиксель записывается во фреймбуфер, и через несколько тактов будет записываться расположенный рядом с ним. Поэтому организация памяти отличается от той, что используется в CPU. И видеочипу, в отличие от универсальных процессоров, просто не нужна кэш-память большого размера, а для текстур требуются лишь несколько (до 128–256 в нынешних GPU) килобайт.

Да и сама по себе работа с памятью у GPU и CPU несколько отличается. Так, не все центральные процессоры имеют встроенные контроллеры памяти, а у всех GPU обычно есть по несколько контроллеров. Кроме того, на видеокартах применяется более быстрая память, и в результате видеочипам доступна в разы большая пропускная способность памяти, что также весьма важно для параллельных расчётов, оперирующих с огромными потоками данных.

В универсальных процессорах большие количества транзисторов и площадь чипа идут на буферы команд, аппаратное предсказание ветвления и огромные объёмы кэш-памяти на чипе. Все эти аппаратные блоки нужны для ускорения исполнения немногочисленных потоков команд. Видеочипы тратят транзисторы на массивы исполнительных блоков, управляющие потоками блоки, разделяемую память небольшого объёма и контроллеры памяти на несколько каналов. Вышеперечисленное не ускоряет выполнение отдельных потоков, оно позволяет чипу обрабатывать нескольких тысяч потоков, одновременно исполняющихся чипом и требующих высокой пропускной способности памяти.

Есть множество различий и в поддержке многопоточности. CPU исполняет 1–2 потока вычислений на одно процессорное ядро, а видеочипы могут поддерживать до 1024 потоков на каждый мультипроцессор, которых в чипе несколько штук. И если переключение с одного потока на другой для CPU стоит сотни тактов, то GPU переключает несколько потоков за один такт.

Кроме того, центральные процессоры используют SIMD (одна инструкция выполняется над многочисленными данными) блоки для векторных вычислений, а видеочипы применяют SIMT (одна инструкция и несколько потоков) для скалярной обработки потоков. SIMT не требует, чтобы разработчик преобразовывал данные в векторы, и допускает произвольные ветвления в потоках.

Вкратце можно сказать, что в отличие от современных универсальных CPU, видеочипы предназначены для параллельных вычислений с большим количеством арифметических операций. И значительно большее число транзисторов GPU работает по прямому назначению – обработке массивов данных, а не управляет исполнением (flow control) немногочисленных последовательных вычислительных потоков. Это схема того, сколько места в CPU и GPU занимает разнообразная логика:

PIC

Рис. 1.1 Сравнение архитектур CPU и GPU.

В итоге, основой для эффективного использования мощи GPU в неграфических расчётах является распараллеливание алгоритмов на сотни исполнительных блоков, имеющихся в видеочипах. К примеру, множество приложений по молекулярному моделированию отлично приспособлено для расчётов на видеочипах, они требуют больших вычислительных мощностей и поэтому удобны для параллельных вычислений. А использование нескольких GPU даёт ещё больше вычислительных мощностей для решения подобных задач.

Выполнение расчётов на GPU показывает отличные результаты в алгоритмах, использующих параллельную обработку данных. То есть, когда одну и ту же последовательность математических операций применяют к большому объёму данных. При этом лучшие результаты достигаются, если отношение числа арифметических инструкций к числу обращений к памяти достаточно велико. Это предъявляет меньшие требования к управлению исполнением (flow control), а высокая плотность математики и большой объём данных отменяет необходимость в больших кэшах, как на CPU.

В результате всех описанных выше отличий, теоретическая производительность видеочипов значительно превосходит производительность CPU.